

DISCIPLINE SPECIFIC ELECTIVES (DSE-5)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Nanomaterials Characterization ELDSE8E	4	3	-	1	Class XII passed with Physics + Mathematics/Applied Mathematics + Chemistry OR Physics + Mathematics/Applied Mathematics + Computer Science/Informatics Practices	-

Learning Objectives

The course will teach various existing techniques used in nanotechnology; their Physical principles/concepts involved in fabrication of the materials at nano scale. The students will study various advanced characterization equipment used to characterize different types of materials including advanced optical and magnetic characterization techniques.

Learning outcomes

On successful completion of this course, student will be able to:

- Understand the concept of Top-down and Bottom-UP approaches for synthesis and processing of nanomaterials
- Understand structural and optical characterization of nanoparticles
- Understand electrical and magnetic characterization of nanoparticles

SYLLABUS OF ELDSE-8E**Total Hours- Theory: 45 Hours, Practicals: 30 Hours****UNIT – I (11 Hours)****Introduction to Synthesis Approaches:**

Concept of bulk versus nanomaterials and dependence of properties on size. Introduction to 'Top down' vs. 'Bottom up' approaches for synthesis of nanostructures (with suitable examples.), Physical, chemical and biological synthesis mechanism. Advantages and disadvantages of top down. Advantages and disadvantages of bottom up

UNIT – II (12 Hours)**Characterization and Data Analysis: Scattering & Imaging techniques:**

Structural: X-Ray Diffraction, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy, Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM).

UNIT – III (11 Hours)**Characterization and Data Analysis using Spectroscopic techniques:**

Optical: Ultraviolet-Visible-Infrared Absorption, Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, Photoluminescence

UNIT – IV (11 Hours)**Characterization and Data Analysis: Electrical and Magnetic**

Electrical: Electrochemical techniques (Cyclic Voltammetry), resistivity, Four Probe Method

Magnetic: Magneto-Resistance, Vibrating Sample Magnetometer, , Magneto Optical Kerr Effect, Magnetic Force Microscopy.

Practical component (if any) – Nanomaterials Characterization Lab**(Use any relevant software(s))****Learning outcomes**

The Learning Outcomes of this course are as follows:

- Calculate the material parameters of nanomaterials using suitable characterization techniques using secondary data.
- Visit to Research laboratories/ Instrumentation Centre and use advanced tools/techniques for synthesis and characterization of nanomaterials.
- Prepare technical reports of the experiments carried out.

LIST OF PRACTICALS (Total Practical Hours- 30 Hours)

1. XRD analysis of the given XRD spectra using secondary data and thus determine the particle size and other parameters of nanomaterial.

2. To analyze chemical properties of a nanomaterial using UV-Visible spectroscopy secondary data
3. Find out the optical band gap of a nanomaterial using UV-Visible spectroscopy secondary data.
4. Software like ImageJ based structural analysis from secondary data (SEM/TEM).
5. To identify the presence of functional groups in nanomaterials using FTIR secondary data.
6. Report writing and presentation of the Lab Visit

Note: Students shall sincerely work towards completing all the above listed practicals for this course. In any circumstance, the completed number of practicals shall not be less than five.

Essential/recommended readings

1. Introduction to Nanotechnology, Charles P. Poole Jr and Frank J. Owens, Wiley Interscience, 1st Edition, 2003.
2. Nanotechnology: Principles & Practices, S.K. Kulkarni, Capital Publishing Company (India), 2024, ISBN 9789381891810
3. Nanotechnology Synthesis to Applications, Sunipa Roy, Chandan Kumar Ghosh, Chandan Kumar Sarkar, CRC Press (Routledge), 1st Edition, 2020

Suggestive readings

1. Nanostructures and Nanomaterials Synthesis, Properties, and Applications, Guozhong Gao, Imperial College Press, 2004

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.